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Abstract:  

In lattice field theory, renormalizable simulation 

algorithms are attractive, because their scaling 

behaviour as a function of the lattice spacing is 

predictable. Algorithms implementing the 

Langevin equation, for example, are known to be 

renormalizable if the simulated theory is. In this 

paper we show that the situation is different in the 

case of the molecular-dynamics evolution on which 

the HMC algorithm is based. More precisely, 

studying the φ 4 theory, we find that the hyperbolic 

character of the molecular-dynamics equations 

leads to non-local (and thus non-removable) 

ultraviolet singularities already at one-loop order of 

perturbation theory.  

Keywords: Lattice QCD, Lattice Quantum Field 

Theory, Renormalization Regularization and 

Renormalons. 

Introduction 

Numerical simulations in lattice field theory are 

based on stochastic processes that produce random 

sequences of representative field configurations. It 

is often useful to interpret the simulation time in 

these calculations as a further space-time 

coordinate. The n-point autocorrelation functions of 

the local fields then formally look like the 

correlation functions in a field theory with an extra 

dimension and they are, in fact, sometimes 

representable in this way. Depending on the 

simulation algorithm, and if the simulated theory is 

renormalizable, the autocorrelation functions may 

conceivably be renormalizable as well. The scaling 

properties of such algorithms (which, for brevity, 

will be referred to as renormalizable) are encoded 

in the continuum theory and thus become 

predictable to some extent.  

In the pure SU(N) gauge theory, for example, 

simulation algorithms that integrate the Langevin 

equation are known to be renormalizable [1, 2]. 

The integrated autocorrelation times τint of 

physical observables have dimension [length]2 in 

this case. Moreover, the standard renormalization 

group analysis and a one-loop calculation in  

 

 

perturbation theory [3–5] imply that they scale 

according to [6] 

 

at small lattice spacings a, where C is an 

observable-dependent constant, g0 the bare gauge 

coupling and r0 the Sommer radius [11]. In lattice 

units, the autocorrelation times thus increase like 

1/a2 as a → 0 up to a logarithmically decreasing 

factor.1 

Most simulations of lattice QCD performed today 

are based on some variant of the HMC algorithm 

[12]. The form of the underlying molecular-

dynamics equations and freefield studies [13] 

suggest that the simulation time has physical 

dimension [length] in this case and that the 

autocorrelation times consequently scale essentially 

like 1/a. As far we know, the renormalizability of 

the algorithm has however never been studied and 

its scaling properties in presence of interactions 

thus remain unknown. 

In this paper, the issue is addressed in the 

framework of perturbation theory. For simplicity 
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the φ 4 theory is considered, but our main result 

(the non-renormalizability of the molecular-

dynamics equations) no doubt extends to most 

theories of interest. A slightly generalized version 

of the HMC algorithm is studied, which was 

introduced many years ago by Horowitz [14–16] 

(see sections 2 and 3). The non-renormalizability of 

the associated stochastic equation is then 

established by showing that the four-point 

autocorrelation function of the fundamental field 

has a non-removable ultraviolet singularity at 

second order in the coupling (sections 4 and 5). 

Stochastic molecular dynamics 

In order to simplify the discussion as much as 

possible, we consider the φ 4 theory with a single 

scalar field φ and dimensional instead of a lattice 

regularization. The action of the field in D = 4 − 2ǫ 

Euclidean dimensions is given by  where m0 

denotes the bare mass parameter and g0 the bare 

coupling constant. The generalized HMC algorithm 

[14–16] integrates a stochastic version of the 

molecular-dynamics equations that derive from the 

action (2.1). In the following subsections, we 

briefly discuss these equations and solve them in 

powers of the coupling g0. 

 

 

Evolution equations 

As usual the molecular dynamics evolves the field 

φ(t, x) together with its momentum π(t, x) as a 

function of a fictitious time t. The stochastic 

evolution equations [14–16] 

 

involve another mass parameter, µ0 > 0, and a 

Gaussian noise η(t, x) with vanishing expectation 

value and variance. 

 

Evidently, the ordinary molecular dynamics is 

recovered in the limit µ0 → 0. Moreover, in the 

second-order form, 

 

and after substituting t → 2µ0t, the evolution 

equations are seen to coincide with the Langevin 

equation up to a term that goes to zero at large µ0. 

Since its introduction by Horowitz [14–16], the 

generalized HMC algorithm has been occasionally 

studied in the literature, where it is referred to as 

the Kramers equation or the L2MC algorithm (see 

refs. [13, 17, 18], for example). In practice, one 

starts from the firstorder equations (2.2), (2.3) and 

implements the algorithm using symplectic 

integrators and acceptance-rejection steps. For the 

theoretical analysis in this paper, we however 

prefer to proceed with the second-order equation 

(2.5). 

 

Relation to the ordinary correlation 

functions 

Since the stochastic molecular dynamics simulates 

the field theory with action (2.1), the equal-time 

autocorrelation functions 

 

must coincide with the ordinary correlation 

functions of the fundamental field in momentum 

space [14–16]. In this section, we show that the 

two- and the four-point autocorrelation functions 

do have this property at one-loop order of 

perturbation theory. Partly the calculation serves as 

a consistency check, but some of the intermediate 

results will be helpful in section 5 as well, where 

we discuss the non-renormalizability of the 

stochastic molecular dynamics. 

Concluding remarks 
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The HMC algorithm is currently the preferred 

simulation algorithm in lattice QCD. In the past 

two decades, various improvements were included 

in this algorithm, many of them with the aim of 

reducing the computational effort required at small 

sea-quark masses (see ref. [20] for a recent review). 

Its scaling behaviour with respect to the lattice 

spacing has not received as much attention so far, 

but rapidly becomes an important issue when the 

continuum limit is approached.  

While the dynamical properties of the HMC 

algorithm are well understood in free field theory 

[13], the situation in the presence of interactions 

tends to be rather more complicated. In particular, 

certain lattice artifacts (topology-changing 

tunneling transitions, for example, or unphysical 

critical points in the space of bare couplings) can 

cause large autocorrelations. The results obtained 

in this paper show that even in the absence of such 

effects there is no reason to expect that the HMC 

algorithm scales essentially as in a theory of free 

fields. Evidently, the non-renormalizability of the 

algorithm does not imply that it is invalid or 

unusable close to the continuum limit, but without 

further insight its scaling behaviour is 

unpredictable in interacting theories. 

The HMC algorithm and the stochastic molecular 

dynamics may conceivably fall into the universality 

class of the Langevin equation. Independently of 

whether this is the case or not, it may be worth 

looking for renormalizable algorithms where the 

simulation time has scaling dimension less than 2. 

Eventually such algorithms might turn out to be 

faster than the HMC algorithm and they would 

have the advantage that their efficiency at small 

lattice spacings is predictable. 

 

 

References 

[1] J. Zinn-Justin, Renormalization and stochastic 

quantization, Nucl. Phys. B 275 (1986) 135 

[SPIRES]. [2] J. Zinn-Justin and D. Zwanziger, 

Ward identities for the stochastic quantization of 

gauge fields, Nucl. Phys. B 295 (1988) 297 

[SPIRES].  

[3] A. Mu˜noz Sudupe and R.F. Alvarez-Estrada, 

Renormalization constants for the propagator of the 

stochastically quantized Yang-Mills field theory, 

Phys. Lett. B 164 (1985) 102 [SPIRES].  

[4] A. Mu˜noz Sudupe and R.F. Alvarez-Estrada, 

β-function for Yang-Mills field theory in stochastic 

quantization, Phys. Lett. B 166 (1986) 186 

[SPIRES].  

[5] K. Okano, Background field method in 

stochastic quantization, Nucl. Phys. B 289 (1987) 

109 [SPIRES].  

[6] L. Baulieu and D. Zwanziger, QCD4 from a 

five-dimensional point of view, Nucl. Phys. B 581 

(2000) 604 [hep-th/9909006] [SPIRES].  

[7] L. Del Debbio, H. Panagopoulos and E. Vicari, 

Theta dependence of SU(N) gauge theories, JHEP 

08 (2002) 044 [hep-th/0204125] [SPIRES].  

[8] S. Schaefer, R. Sommer and F. Virotta, 

Investigating the critical slowing down of QCD 

simulations, PoS(LAT2009)032 [arXiv:0910.1465] 

[SPIRES]. 

[9] S. Schaefer, R. Sommer and F. Virotta, Critical 

slowing down and error analysis in lattice QCD 

simulations, Nucl. Phys. B 845 (2011) 93 

[arXiv:1009.5228] [SPIRES].  

[10] M. L¨uscher, Topology, the Wilson flow and 

the HMC algorithm, PoS(Lattice 2010)015 

[arXiv:1009.5877] [SPIRES].  

[11] R. Sommer, A new way to set the energy scale 

in lattice gauge theories and its applications to the 

static force and αs in SU(2) Yang-Mills theory, 

Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] 

[SPIRES]. 

 [12] S. Duane, A.D. Kennedy, B.J. Pendleton and 

D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 

(1987) 216 [SPIRES].  

[13] A.D. Kennedy and B. Pendleton, Cost of the 

generalised Hybrid Monte Carlo algorithm for free 

field theory, Nucl. Phys. B 607 (2001) 456 [hep-

lat/0008020] [SPIRES].  

[14] A.M. Horowitz, Stochastic quantization in 

phase space, Phys. Lett. B 156 (1985) 89 

[SPIRES].  



                                                                                                                                UGC Care Group I Journal 
Journal of Management & Entrepreneurship                                                          Vol-10 Issue-02 2021 
ISSN 2229-5348    
 
[15] A.M. Horowitz, The second order Langevin 

equation and numerical simulations, Nucl. Phys. B 

280 (1987) 510 [SPIRES].  

[16] A.M. Horowitz, A generalized guided Monte 

Carlo algorithm, Phys. Lett. B 268 (1991) 247 

[SPIRES].  

[17] M. Beccaria and G. Curci, The Kramers 

equation simulation algorithm. 1. Operator 

analysis, Phys. Rev. D 49 (1994) 2578 [hep-

lat/9307007] [SPIRES].  

[18] K. Jansen and C. Liu, Kramers equation 

algorithm for simulations of QCD with two flavors 

of Wilson fermions and gauge group SU(2), Nucl. 

Phys. B 453 (1995) 375 [Erratum ibid. B 459 

(1996) 437] [hep-lat/9506020] [SPIRES].  

[19] N.N. Bogoliubov and D.V. Shirkov, 

Introduction to the theory of quantized fields, 

Wiley-Interscience, New York U.S.A. (1959) 

[Intersci. Monogr. Phys. Astron. 3 (1959) 1] 

[SPIRES].  

[20] M. L¨uscher, Computational strategies in 

lattice QCD, lectures given at the Summer school 

on “Modern perspectives in lattice QCD”, Les 

Houches France August 3–28 2009 

[arXiv:1002.4232] [SPIRES]. 

 

 

 

 

 

 

 

 

 

 

 


